
UPComp - a PHP component for recommendation based on user behaviour

Ladislav Peška, Alan Eckhardt, Peter Vojtáš

Department of Software Engineering
Charles University in Prague

Prague, Czech Republic
Email: lpeska@seznam.cz, eckhardt@ksi.mff.cuni.cz, vojtas@ksi.mff.cuni.cz

Abstract—In this paper, we investigate the possibilities of in-
terpreting user behaviour in order to learn his/her preferences.
UPComp, a PHP component enabling use of user preferences
for recommendation, is described. UPComp is a standalone
component that can be integrated into any PHP web with only
basic knowledge of PHP, HTML and SQL.

The methods of user behaviour interpretation are evaluated
on a real web shop with tourist trips using UPComp.

Keywords-Recommender systems; Web design; User prefer-
ences

I. INTRODUCTION

Recommender systems has got a lot of attention in a

last few years mainly because of enormous expansion of

internet and, from the scientific point of view, also thanks

to the NetFlix prize challenge [1]. Most of the efforts

were in developing algorithms that match most closely the

preferences of the user. Especially in the final stages of

NetFlix, the methods get very complex with little actual

knowledge about the user preferences - what and why the

user prefers. Implementing such methods for an average

webmaster of a small webshop is very difficult.

That was the motivation for developing a component for

recommendation that would be simple enough to deploy

for a ordinary webmaster, yet extendible and flexible. The

main focus was on the ease of use, leaving the complex

algorithms as future work and possible enhancements. Also

the component shouldn’t require modification of existing

user interface.

In this paper, we propose a new PHP recommendation

component UPComp. UPComp is a flexible and easy to

embed. We do not want to propose a new recommendation

strategy, but we want to allow average webmasters to imple-

ment of recommendation to their websites. We also present

experiments on a real e-shop with considerable traffic, where

naive recommendation was previously implemented.

The paper is structured into five sections. The second

section covers some of the related work, UPComp is de-

scribed in the third section. Experiments on the real web

shop are described in the fourth section and finally the paper

concludes in the fifth section.

II. RELATED WORK

Our motivation is an unknown user, which is just a

new session in web server. For being able to recommend

preferred products to the user, we have to have some sort

of feedback from the user on his/her preferences. Two main

types of user feedback are distinguished in [2] - explicit and

implicit.

A. Explicit feedback

Explicit feedback is given by the user in order to express

his/her preferences. A typical example is giving an object a

rating, often in form of stars (1-5 stars). We can be sure that

the object is preferred to the degree specified by the user.

Having explicit feedback, recommendation is much sim-

pler. There are many methods learning preferences from the

ratings that are able to order the whole database according

to the learnt preferences [3], [4], [5], [6].

The main drawback of explicit feedback is the possible

unwillingness of the users to give it and that rating interrupts

typical “workflow” of the user on the website. The user often

does not know what is the benefit of giving the rating, so

he/she is unwilling to do it.

B. Implicit feedback

Implicit feedback is actions that the user does while

pursuing his/her goal - most often searching for the best

product and buying it. The main difference to explicit

feedback is that it does not require any special effort from

the user, the user interface does not need to change and the

user behaves in his/her usual pattern.

There are many types of actions that can be captured.

Viewing time and scrolling are used most often [7]; but

the results are ambiguous. Some works state that there is a

correlation between interest and viewing time, while others

disagree. For example, in [8], the same amount of time was

spent viewing relevant and irrelevant documents.

The price we pay when using implicit feedback is that

the user actions are very difficult to interpret. Does the

long viewing time correspond to the high preference? There

is also the difficulty in expressing negative preference -

is not clicking on a product detail expression of negative

preference or expression of not noticing the link?

2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4513-4/11 $26.00 © 2011 IEEE

DOI 10.1109/WI-IAT.2011.180

306

2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4513-4/11 $26.00 © 2011 IEEE

DOI 10.1109/WI-IAT.2011.180

306

class NewMethod extends AbstractMethod
implements ObjectSimilarity{
public function getSimilarObjects(

$objectID, $noOfObjects, $objectList="");
public function getSimilarObjectsFrom(

$from,$objectID,$noOfObjects, $objectList="");
}

Figure 1. New recommendation method stub

C. Other possibilities for recommendation

There are open source systems that already contain the

explicit recommendation possibility [9]. The description of

various approaches is in [10] but there is no possibility to

download source codes. To our best knowledge, UPComp

is a first attempt to provide a standalone component that is

able to be included in an existing system.

III. UPCOMP

Our main objective was to develop a recommender system

called UPComp suitable for e-shops. UPComp is easy to

implement and it should increase the effectiveness of the e-

shop. The most important function of recommender systems

in e-shops is to provide a set top-k “best” objects. The

recommended set of objects may differ at different contexts,

e.g. recommended items in shop cart would be related to the

items in the cart, but recommended items in a category list-

ing would be related to the selected category. Recommended

objects are typically displayed in a small area, in addition

to the main information on the page. This fact results into

a small number of objects presented.

According to the preliminary work, we have formulated

the key features of our recommender system:

• domain independence

• focus on calculating the top-k objects (not to give an

exact recommendation for a single object)

• simple developer interface

• capability to use different computational methods +

possible extensions in the future. New methods may

look similar to the code in Figure 1

• simple, developer friendly user preferences mining,

important difference against the most of the other

recommender system

• easy switch from an existing trivial recommendation -

only replacing the SQL query with a few lines of PHP

UPComp requires following assumptions:

• query → response communication style based on the

same principles as querying the database. The items

are recommended with respect to the current context

of the page

• using SQL for specifying satisfactory objects

• UPComp results are lists of top-k objects

A. UPComp architecture

A web shop is typically divided into three components -

web pages for visual presentation, PHP for business logic

Figure 2. UPComp architecture

require_once("UPCompCore.php");

UPCompCore::loadCore();

UPCompCore::loadJavaScripts($object_id);

Figure 3. UPComp loading in PHP

and database for storing data. The UPComp implementation

(Figure 2) can be divided into two main parts: preference

mining and top-k objects evaluation. UPComp is spread

over all three components (web, PHP and database)- on the

web part is represented by Javascript that monitors users

behaviour and by PHP scripts that create the queries to

the UPComp. In the middle is the core PHP script that

processes preferences and transforms the data loaded from

the database. In Figure 3 is an example how to load UPComp

in the beginning of the PHP script. The data about users is

stored in the database, too.

We used JavaScript events to catch user

actions as the preference collecting (e.g. <body

onload="objectOpen();">). Each combination of

a user and a type of action produces a single user-

object preference (e.g. 10 views of a product detail, 50

onmouseover events over a product detail). Then we use

AJAX with PHP script on the server side to store the

preferences into MySQL database. The set of user actions

is extensible, as long as the actions are catch-able via

JavaScript. Although the system allows catching both

implicit and explicit user actions, we mainly focused on the

implicit user actions, because webmasters do not often want

to use ratings as they require a change in the user interface.

Implicit actions are aggregated to one value for each action

type, e.g. 50 onmouseover events over a product detail

produce the deep-pageview preference in the degree 0.8.

The observed user actions were:

• page-view - opening of the object detail page

• deep-pageview - “using” the object detail page (count-

ing the onmouseover events)

• object-opened-from-list - opening a detail page of an

object shown in the retrieved top-k list

• buy - buying of an object

When deploying UPComp in the web shop, the webmaster

has to choose some of the above actions as “user preference”

and set weight to each action. Weighted average of the

307307

selected actions is then interpreted as the preference.

B. Methods for recommendation

We implemented several basic methods for evaluating top-

k objects.

Random method
Random method simply picks k random objects from the set

of satisfactory ones. As this is very simple and preference-

less method, all other methods should be better than Ran-

dom. If they fail to be better, there is no reason to use them.

Object rating
Object rating computes weighted sum of user preference

of the given object. Type of the user actions used F and

its weight wF can be specified by the method parameters.

Methods result is the k best rated objects.

ObjectRating(o) =
∑

F,U

wF ∗ F (U, o)

Collaborative
Collaborative method first computes m nearest neighbours

of the current user. Method uses Pearson’s Correlation of

user preferences as the user similarity function. Then it

computes Object rating restricted to the users from m-NN

set. Method’s result is the k best rated objects among the

users similar to the current one. Bellow is the formula for

computing the similarity among users.

Sim(Ui, U) = cor
∀o

(Pref(Ui, o), P ref(U, o))

where Pref(U, o) is the preference of object o by user U .

Bellow is the formula for estimating the preference of an

object using Collaborative filtering. m − NN is the set of

m nearest neighbours to the current user.

Coll.(o) =

∑
Ui∈m−NN Pref(Ui, o) ∗ Sim(Ui, U)

∑
Ui∈m−NN Sim(Ui, U)

C. Top-k list building

For the top-k evaluation process, we have adjusted the

Combined() method from [11]. It allows using more than

one method and using them together.

Combined(o) = wRA∗RA(o)+wOR∗OR(o)+wCF ∗CF (o)
wRA+wOR+wCF

In the formula, wX corresponds to the weight of method

X and X(o) means the preference estimated by method X
for object o. Contrary to the original Combined() method,

we have allowed web developer to specify (as a part of the

UPComp query) which method to use and what are their

weights.

Only objects that satisfy given context are taken into

account. E.g. objects from a category, or related to the

objects in the shop cart.

In experiments, we used only one of the above mentioned

method for preference estimation (Random, Object rating,

Collaborative) in order to be able to compare the methods

among them.

Figure 4. Screenshot of Slantour web page

IV. EXPERIMENTS

We conducted testing of the UPComp recommender

on the real users of the SLAN tour travel agency

(www.slantour.cz). The website contains a catalogue of tours

divided into several categories and subcategories. Each tour

has several attributes such as the name, the destination, the

tour type, the departure and the arrival dates etc. During the

period of testing, the website showed the following average

characteristics:

approx. 530 unique users/day (9000 total)

1800 tour detail views/day

13 bookings/day (218 total)

3min. average visit duration

Tours recommended by the UPComp were then shown on

each category and subcategory page instead of the original

SQL query (originally a random pick from the objects of

the given category was used). The example of such a page

is in Figure 4.
The website does not contain any controls to specify

explicit user feedback, which is usually used as the correct

user preference [7], [12]. Instead of using explicitly given

preferences, we assume that booking an object (a tour)

represents maximal positive preference of the user.
Also opening object detail from the list of recommended

objects represents positive preference, though not as high

as the booking. Accordingly, we introduced 3 functions for

measuring recommendation methods performance:

1) Open/Shown = #(object detail opened from top-k list

of objects) / #(object shown in top-k list of objects)

2) OrderShown/Shown = #(object booked by user whom

it was shown in the top-k list) / #(object shown in

top-k list)

3) OrderOpen/Shown = #(object booked by user who

opened it from the top-k list) / #(object shown in top-k
list)

In Table I is the source data collected during the exper-

iment. There are differences between the amounts of users

for each method because of variation of traffic in time. Each

method was deployed on the server for one week.
Column Shown corresponds to the total number of rec-

ommended tours shown. Next column Open is the number

308308

Table I
DATA OBTAINED DURING THE EXPERIMENT

Method Shown Open Order OrderShown OrderOpen

Random 40997 836 66 16 6
ObjectRating 45128 1008 94 53 21
Collaborative 40176 754 58 44 14

Table II
RESULTS OF METHODS EVALUATION

Method Open/ Shown OrderShown/
Shown

OrderOpen/
Shown

Random 0,020392 0,000390 0,000146
ObjectRating 0,022336 0,001174 0,000465
Collaborative 0,018767 0,001095 0,000348

of tour detail pages opened from the recommendation by

clicking on the link. The next column is the number of

ordered tours. The fourth column is the number of ordered

tours that were shown in the recommendation box. Note that

the user does not necessarily click on the recommendation

- he/she could have followed other click stream to order the

tour. The best possibility is the last column, which is the

number of tours that were ordered from the recommendation

box. The user clicked on the recommendation and ordered

the tour.

Note that OrderOpen is a subset of OrderShown and

OrderShown is a subset of Order.

In Table II are processed results for the three methods and

the above defined measures.

The test results proved that both Collaborative and Object

rating methods are significantly better then the Random

method in the most of the observed performance measures.

However, the absolute results are yet not very impressive,

so further work should focus on the methods parameters

adjustment, methods combination or the new methods im-

plementation. Quite surprising was the success of simple

Object rating method which overtook both other methods

in all measured functions. On the other hand, collaborative

method had the best performance in showing the objects that

was later booked by the user.

V. CONCLUSION

We have described UPComp - a component for user

preference integration into PHP web shops. UPComp should

allow web shop owner to add personalized recommendations

to their webs, without having to cope with recommendation

theory and difficult implementation. Only basic knowledge

of PHP and JavaScript is required.

UPComp was also extensively evaluated on a real system

with considerable traffic. The test results proved that both

Collaborative and Object rating methods are significantly

better then the Random method in the most of the observed

performance measures. The results are quite promising, but

they also show need of future examination and implemen-

tation of more complex methods.
UPComp is available at

http://code.google.com/p/ksipreferencesoftware as SVN

checkout or zipped PHP source codes.

ACKNOWLEDGMENT

The work on this paper was supported by Czech projects

SVV-2010-261312, MSM 0021620838 and GACR 202-10-

0761 and GACR 202-11-0968

REFERENCES

[1] Netflix dataset, http://www.netflixprize.com.

[2] D. Kelly and J. Teevan, “Implicit feedback for inferring user
preference: a bibliography,” SIGIR Forum, vol. 37, no. 2, pp.
18–28, 2003.

[3] A. Eckhardt, “Prefwork - a framework for user preference
learning methods testing,” in In proceedings of ITAT 2009 In-
formation Technologies - Applications and Theory, Slovakia,
P. Vojtas, Ed. CEUR-WS.org, 2009, pp. 7–13.

[4] I. H. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques, 2nd Edition. San Francisco:
Morgan Kaufmann, 2005.

[5] T. Kliegr, “Uta - nm: Explaining stated preferences with
additive non-monotonic utility functions,” in Proceedings of
Workshop Preference Learning in ECML/PKDD’09, Septem-
ber 2009.

[6] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using
collaborative filtering to weave an information tapestry,”
Commun. ACM, vol. 35, no. 12, pp. 61–70, 1992.

[7] M. Claypool, P. Le, M. Wased, and D. Brown, “Implicit
interest indicators,” in IUI ’01: Proceedings of the 6th in-
ternational conference on Intelligent user interfaces. New
York, NY, USA: ACM, 2001, pp. 33–40.

[8] D. Kelly and N. J. Belkin, “Reading time, scrolling and
interaction: exploring implicit sources of user preferences for
relevance feedback,” in SIGIR ’01. New York, NY, USA:
ACM, 2001, pp. 408–409.

[9] B. Václav, A. Eckhardt, and P. Vojtáš, “Prefshop - a web shop
with user preference search capabilities,” in In Proceedings of
2010 International Workshop on Web Information Retrieval
Support Systems, IEEE Computer Society. IEEE Computer
Society, 2010, pp. 330–333.

[10] J. B. Schafer, J. A. Konstan, and J. Riedl, “E-commerce
recommendation applications,” Data Min. Knowl. Discov.,
vol. 5, pp. 115–153, January 2001.

[11] A. Eckhardt and P. Vojtáš, “Combining various methods
of automated user decision and preferences modelling,” in
MDAI 2009 - The 6th International Conference on Modeling
Decisions for Artificial Intelligence, 2009, pp. 172–181.

[12] R. White, J. M. Jose, and I. Ruthven, “Comparing explicit
and implicit feedback techniques for web retrieval: Trec-10
interactive track report,” in TREC, 2001.

309309

